В чем достоинства и недостатки шины vlb. Стандарты системных и локальных шин - реферат. Производительность шины PCI

XT-Bus – шина архитектуры XT – первая в семействе IBM PC. Относительно проста, поддерживает обмен 8-разрядными данными внутри 20-разрядного (1 Мб) адресного пространства (обозначается как "разрядность 8/20"), работает на частоте 4.77 МГц. Совместное использование линий IRQ в общем случае невозможно. Конструктивно оформлена в 62-контактних разъемах.

ISA (Industry Standard Architecture, архитектура промышленного стандарта) – основная шина на компьютерах типа PC AT (другое название – AT-Bus). Является расширением XT-Bus, разрядность – 16/24 (16 Мб), тактовая частота – 8 МГц, предельная пропускная способность – 5.55 Мб/с. Разделение IRQ также невозможно. Возможна нестандартная организация Bus Mastering, но для этого нужен запрограммированный 16-разрядный канал DMA. Конструктив – 62-контактный разъем XT-Bus с прилегающим к нему 36-контактным разъемом расширения.

EISA (Enhanced ISA, расширенная ISA) – функциональное и конструктивное расширение ISA. Внешне разъемы имеют такой же вид, как и ISA, и в них могут вставляться платы ISA, но в глубине разъема находятся дополнительные ряды контактов EISA, а платы EISA имеют более высокую ножевую часть разъема с дополнительными рядами контактов. Разрядность – 32/32 (адресное пространство – 4 Гб), работает также на частоте 8 МГц. Предельная пропускная способность – 32 Мб/с. Поддерживает Bus Mastering - режим управления шиной со стороны любого из устройств на шине, имеет систему арбитража для управления доступом устройств к шине, позволяет автоматически настраивать параметры устройств, возможно разделение каналов IRQ и DMA.

MCA (Micro Channel Architecture, микроканальная архитектура) – шина компьютеров PS/2 фирмы IBM. Не совместима ни с одной другой, разрядность – 32/32, (базовая - 8/24, остальные – в качестве расширений). Поддерживает Bus Mastering, имеет арбитраж и автоматическую конфигурацию, синхронная (жестко фиксирована длительность цикла обмена), предельная пропускная способность – 40 Мб/с. Конструктив – одно-трехсекционный разъем (такой же, как у VLB). Первая, основная, секция – 8-разрядная (90 контактов), вторая – 16-разрядное расширение (22 контакта), третья – 32-разрядное расширение (52 контакта). В основной секции предусмотрены линии для передачи звуковых сигналов. Дополнительно рядом с одним из разъемов может устанавливаться разъем видеорасширения (20 контактов). EISA и MCA во многом параллельны, появление EISA было обусловлено собственностью IBM на архитектуру MCA.

VLB (VESA Local Bus, локальная шина стандарта VESA) – 32-разрядное дополнение к шине ISA. Конструктивно представляет собой дополнительный разъем (116-контактный, как у MCA) при разъеме ISA. Разрядность – 32/32, тактовая частота – 25..50 МГц, предельная скорость обмена – 130 Мб/с. Электрически выполнена в виде расширения локальной шины процессора – большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации. Из-за этого возрастает нагрузка на выходные каскады процессора, ухудшается качество сигналов на локальной шине и снижается надежность обмена по ней. Поэтому VLB имеет жесткое ограничение на количество устанавливаемых устройств: при 33 МГц – три, 40 МГц – два, и при 50 МГц – одно, причем желательно интегрированное в системную плату.

PCI (Peripheral Component Interconnect, соединение внешних компонент) – развитие VLB в сторону EISA/MCA. Не совместима ни с какими другими, разрядность – 32/32 (расширенный вариант – 64/64), тактовая частота – до 33 МГц (PCI 2.1 – до 66 МГц), пропускная способность – до 132 Мб/с (264 Мб/с для 32/32 на 66 МГц и 528 Мб/с для 64/64 на 66 МГц), поддержка Bus Mastering и автоконфигурации. Количество разъемов шины на одном сегменте ограничего четырьмя. Сегментов может быть несколько, они соединяются друг с другом посредством мостов (bridge). Сегменты могут объединяться в различные топологии (дерево, звезда и т.п.). Самая популярная шина в настоящее время; используется также на компьютерах, отличных от IBM-совместимых. Разъем похож на MCA/VLB, но чуть длиннее (124 контакта). 64-разрядный разъем имеет дополнительную 64-контактную секцию с собственным ключом. Все разъемы и карты к ним делятся на поддерживающие уровни сигналов 5 В, 3.3 В и универсальные; первые два типа должны соответствовать друг другу, универсальные карты ставятся в любой разъем.

Существует также расширение MediaBus , введенное фирмой ASUSTek – дополнительный разъем содержит сигналы шины ISA.

PCMCIA (Personal Computer Memory Card International Association, ассоциация производителей плат памяти персональных компьютеров) – внешняя шина компьютеров класса NoteBook. Другое название модуля PCMCIA – PC Card. Предельно проста, разрядность – 16/26 (адресное пространство – 64 Мб), поддерживает автоконфигурацию, возможно подключение и отключение устройств в процессе работы компьютера. Конструктив – миниатюрный 68-контактный разъем. Контакты питания сделаны более длинными, что позволяет вставлять и вынимать карту при включенном питании компьютера.

Конец работы -

Эта тема принадлежит разделу:

Архитектура системных плат

Одной из главных микросхем системной платы является микросхема bios это основная система ввода вывода basic input output system зашитая в пзу.. обычно на системной плате установлено только пзу с системным main system.. обычно bios для современных системных плат разрабатывается одной из специализирующихся на этом фирм однако некоторые..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Шина VLB (VESA Local Bus - локальная шина VESA) - разработана в 1992 г. Ассоциацией стандартов видеооборудования (VESA - Video Electronics Standards Associa­tion), поэтому часто ее называют шиной VESA.

Шина VLB, по существу, является расширением внутренней шины МП для связи с ви­деоадаптером и реже с винчестером, платами Multimedia, сетевым адаптером. Разрядность шины - 32 бита, на подходе 64-разрядный вариант шины. Реальная скорость передачи дан­ных по VLB - 80 Мбайт/с (теоретически достижимая - 132 Мбайт/с).

Недостатки шины:

· рассчитана на работу с МП 80386, 80486, пока не адаптирована для процессоров Pentium, Pentium Pro, Power PC;

· жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту);

· малое количество подключаемых устройств - к шине VLB могут подключаться толь­ко четыре устройства;

· отсутствует арбитраж шины - могут быть конфликты между подключаемыми уст­ройствами.

Шина PCI (Peripheral Component Interconnect - соединение внешних уст­ройств) - разработана в 1993 г. фирмой Intel. Шина PCI является намного более универсальной, чем VLB, имеет свой адаптер, по­зволяющий ей настраиваться на работу с любым МП: 80486, Pentium, Pentium Pro, Power PC и др.; она позволяет подключать 10 устройств самой разной конфигурации с возможностью автоконфигурирования, имеет свой "арбитраж", средства управления передачей данных. Разрядность PCI - 32 бита с возможностью расширения до 64 бит, теоретическая про­пускная способность 132 Мбайт/с, а в 64-битовом варианте - 263 Мбайт/с (реальная вдвое ниже). Шина PCI хотя и является локальной, выполняет и многие функции шины расшире­ния, в частности, шины расширения ISA, EISA, MCA (а она совместима с ними) при нали­чии шины PCI подключаются не непосредственно к МП (как это имеет место при использовании шины VLB), а к самой шине PCI (через интерфейс расширения). Варианты конфигурации систем с шинами VLB и PCI показаны соответственно на рис. 4.3 и 4.4. Следует иметь в виду, что использование в ПК шин VLB и PCI возможно только при наличии соответствующей VLB- или PCI-материнской платы. Выпускаются ма­теринские платы с мультишинной структурой, позволяющей использовать ISA/EISA, VLB и PCI, так называемые материнские платы с шиной VIP (по начальным буквам VLB, ISA и PCI).

Рис. 4.3. Конфигурация системы с шиной VLB

Рис. 4.4. Конфигурация системы с шиной PCI

Таблица 4.4. Основные характеристики шин

Параметр

Разрядность шины, бит данных адреса

Рабочая частота, МГц

Пропускная способность. Мбайт/с теоретическая практическая

Число подключаемых устройств, шт.

Локальные шины IDE (Integrated Device Electronics), EIDE (Enhanced IDE), SCSI (Small Computer System Interface) используются чаще всего в качестве интерфейса только для внешних запоминающих устройств.

ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ ПК

Основными характеристиками ПК являются:

1. Быстродействие, производительность, тактовая частота. Единицами измерения быстродействия служат:

МИПС (MIPS - Mega Instruction Per Second) - миллион операций над числами с фиксированной запятой (точкой);

МФЛОПС (MFLOPS - Mega FLoating Operations Per Second) - миллион операций над числами с плавающей запятой (точкой);

КОПС (KOPS - Kilo Operations Per Second) для низкопроизводительных ЭВМ - ты­сяча неких усредненных операций над числами; ГФЛОПС (GFLOPS - Giga FLoating Operations Per Second) - миллиард операций в секунду над числами с плавающей запятой (точкой).

Оценка производительности ЭВМ всегда приблизительная, ибо при этом ориентиру­ются на некоторые усредненные или, наоборот, на конкретные виды операций. Реально при решении различных задач используются и различные наборы операций. Поэтому для харак­теристики ПК вместо производительности обычно указывают тактовую частоту, более объ­ективно определяющую быстродействие машины, так как каждая операция требует для своего выполнения вполне определенного количества тактов. Зная тактовую частоту, можно достаточно точно определить время выполнения любой машинной операции.

Пример 4.14. При отсутствии конвейерного выполнения команд и увеличении внут­ренней частоты у микропроцессора (см. подразд. 4.3) тактовый генератор с частотой 33 МГц обеспечивает выполнение 7 млн. коротких машинных операций (сложение и вычитание с фиксированной запятой, пересылки информации и др.) в секунду; с час­тотой 100 МГц - 20 млн. коротких операций в секунду.

2. Разрядность машины и кодовых шин интерфейса.

Разрядность - это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК.

3. Типы системного и локальных интерфейсов.

Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды. 4. Емкость оперативной памяти. Емкость оперативной памяти измеряется чаще всего в мегабайтах (Мбайт), реже в ки­лобайтах (Кбайт). Напоминаем: 1 Мбайт = 1024 Кбайта = 10242 байт. Многие современные прикладные программы при оперативной памяти емкостью меньше 8 Мбайт просто не работают либо работают, но очень медленно. Следует иметь в виду, что увеличение емкости основной памяти в 2 раза, помимо всего прочего, дает повышение эффективной производительности ЭВМ при решении слож­ных задач примерно в 1,7 раза.

Издание: Архитектура ПК, комплектующие, мультимедиа

5. Шины компьютера

Шина ПК - это канал (магистраль), который связывает между собой процессор, ОЗУ, кэш-память, контроллеры устройств ПК, а также разъемы (слоты) расширения на материнской плате для подключения различных контроллеров устройств ввода/вывода. При этом для сохранения совместимости данные слоты должны быть механически и электрически идентичны в разных моделях IBM-совместимых компьютеров.
По шине передаются как данные, так и управляющие сигналы.
Работа шины осуществляется в соответствии с определенными правилами, регламентированными стандартами.
Важнейшие характеристики шин: частоты, разрядности, скорости передачи данных. При этом, как правило, частота измеряется в мегагерцах, разрядность - в битах, скорость - в мегабайтах в секунду или в мегабитах в секунду.

Шины ISA, EISA, MCA

Наиболее распространены три основных стандарта системной шины для IBM-совместимых ПК:

  • Industry Standard Architecture (ISA);
  • Extended Industry Standard Architecture (EISA);
  • Micro Channel Architecture (MCA).

ISA - системная шина (ISA-bus), которая была специально разработана в 1984 г. под возможности процессоров i80286 для IBM PC/AT286. Для ISA-шины часто используется другое название - AT-шина. Эта шина была предназначена заменить шину ХТ ПК IBM PC/XT и аналогичных IBM-совместимых ПК на основе процессоров i8086, i8088 и их аналогов. Ввиду неперспективности морально устаревшей шины XT ее особенности и возможности рассматривать здесь нецелесообразно. Шина ISA позволяет передавать 16-разрядные данные и команды с частотой 8 МГц, что соответствует скорости 16 Мбайт/с. Значения этих параметров были сравнительно высокими и достаточными не только для того уровня развития компьютерной техники, они и в настоящее время часто удовлетворяют требованиям ПК для решения задач, не требующих высокой производительности и не критичных к времени их выполнения. Данная шина стала стандартом для IBM-совместимых ПК на длительный срок.
Системная шина EISA (EISA-bus) фактически является расширением шины ISA. Частота шины EISA - 8 МГц. Однако эта шина характеризуется большей разрядностью - 32 бита и более высокой скоростью передачи данных - до 33 Мбайт/с. Шина EISA совместима с ISA-шиной: кроме собственно 32-битных плат EISA-контроллеров на EISA-шине могут быть установлены стандартные 16-битные платы ISA. В настоящее время шина EISA в основном используется в некоторых вариантах файл-серверов компьютерных сетей.
MCA - системная шина с высокой скоростью передачи данных - до 160 Мбайт/с и разрядностью шины данных от 16 до 64 бит. Разработка и исключительное право на ее использование принадлежит фирме IBM. Вероятно поэтому, для ПК, использующих MCA, рынок предлагает сравнительно мало периферийных устройств и по относительно высоким ценам. Вследствие этого популярность данной шины сравнительно низка и производство компьютеров с шиной МСА практически прекращено.
Развитие вычислительной техники и расширение области применения ПК сопровождаются увеличением потоков информации и скорости передачи данных между процессором, внутренней и внешней памятью, устройствами ввода/вывода и т. д. Однако данное увеличение сдерживается ограниченной пропускной способностью указанных системных шин. Все это требует новых архитектурных решений, обеспечивающих повышение производительности ПК.

Шины VLB, PCI

Одним из таких решений явилось введение в состав архитектуры ПК отдельной шины для данных, поступающих для увеличения скорости их передачи в обход системной шины (ISA, MCA, EISA), например, для связи процессор-память так называемой локальной шины - Local Bus (LB). Локальная шина быстрее, чем шины ISA, EISA, потому что данные по ней передаются с внешней тактовой частотой используемого в составе ПК процессора. Например, 33 МГц в случае Intel 486DX2-66, тогда как стандартная шина ISA работает при тактовой частоте 8 МГц.
Стандарт локальной шины VESA (VESA local bus) был разработан и введен в 1992 г. фирмами-производителями компьютерной техники, входящими в ассоциацию VESA (Video Electronics Standart). При разработке нового стандарта одновременно решались две задачи. Первая - повышение производительности компьютеров за счет увеличения пропускной способности системных шин. Вторая - сохранение преемственности в использовании стандартного оборудования. В результате была создана 32-разрядная локальная шина - VESA local bus (VLB), дополняющая стандартную системную шину ISA при обмене данными процессора с контроллерами монитора, жесткого диска, кэш-памяти, сети и т. д. В соответствии со стандартом максимальное число контроллеров, подключаемых к данной локальной шине, было установлено в количестве не более трех. Тактовая частота VLB соответствовала частоте процессора. При внешней частоте процессора, равной 33 МГц, шина VLB обеспечивала скорость передачи данных до 132 Мбайт/с.
К основным недостаткам шины VLB следует отнести следующие: несовместимость и слабую нагрузочную способность VLB. Действительно, поскольку быстродействие VLB связано с тактовой частотой процессора, контроллеры, подключаемые к шине VLB, должны были обеспечивать работу на этой частоте. На других ПК частота могла отличаться. Слабая нагрузочная способность VLB в основном была связана с тем, что данная шина фактически являлась продолжением контактов собственной шины процессора ПК, что и отражено на приведенном рисунке. Кстати, этим объясняется совпадение частоты шины VLB и внешней тактовой частоты процессора. Каждое подключаемое устройство является дополнительной нагрузкой и искажает форму передаваемых процессором сигналов (их фронтов). Именно поэтому число подключаемых к локальной шине VLB устройств ограничено: стандарт VLB предусматривает подключение к данной шине не более трех устройств, обычно это одно или два устройства. Как правило, это контроллеры монитора и жестких дисков.

Рисунок

Альтернативный вариант локальной шины был разработан фирмой Intel - шина PCI (Peripheral Component Interconnect). Эта шина образует 32-битный канал между процессором и контроллерами периферийных устройств. Для PCI частота ограничена 33 МГц, что позволяет передавать данные по шине, как и в случае использования шины VESA, со скоростью до 132 Мбайт/с. Таким образом, шина PCI имеет практически такие же скоростные свойства, что и шина VLB при частоте процессора равной 33 МГц. Однако число контроллеров не ограничивается тремя, как для VLB, а может достигать десяти. Стандарт шины PCI поддерживает спецификации VESA для BIOS и видеоадаптеров. Кроме того, локальная шина PCI оптимально соответствует 64-битной технологии современных процессоров. Рисунок

Стандарт PCI предусматривает конфигурирование устройств, подключаемых к компьютеру, программным способом, что соответствует концепции plug-and-play (включил и работай). При этом в момент обнаружения нового устройства персональный компьютер без перезагрузки и выхода из текущего приложения должен установить параметры, необходимые для работы устройств в составе системы: номера прерываний IRQ, номера каналов прямого доступа DMA и т. д. Для реализации этой возможности необходимо, чтобы аппаратно-программное обеспечение ПК (BIOS и ОС) поддерживало plug-and-play. К операционным системам, поддерживающим ряд спецификаций технологии plug-and-play, относятся, например, Windows 95, Windows 98 и OS/2 Warp.
Шина PCI архитектурно сложнее. Однако фирма Intel выпустила ряд специализированных микросхем для шины PCI, упростив тем самым ее реализацию. Это позволило шине PCI полностью вытеснить шину VLB из архитектуры ПК.
Архитектура современных ПК, ориентированная на использование в своем составе локальных шин, способствует повышению общей производительности компьютеров. В результате системные и прикладные программы выполняются значительно быстрее.
Традиционно шина VLB в основном использовалась в ПК с процессорами 486, в то время как PCI - в ПК, начиная с процессоров Pentium. Хотя имелись варианты PCI и для 486 компьютеров. Кстати, следует отметить, что для 486 ПК в некоторых случаях использование VLB могло быть даже предпочтительнее шины PCI. Действительно, для PCI, как это уже отмечалось, стандарт устанавливает тактовую частоту равной 33 МГц, а для VLB - равенство частоты шины с внешней тактовой частотой процессора. Поэтому при использовании процессоров с внешней тактовой частотой 40 МГц, например, Am486DX/40, Am486DX2/80, Am486DX4/120, ПК с VLB обладали некоторыми преимуществами. Так, контроллеры устройств, подключенные к VLB процессора с внешней частотой в 40 МГц, - видеоадаптеры, жесткие диски, сетевые карты и т. д., - обеспечивали повышенную скорость работы по сравнению с использованием PCI или VLB с процессором с внешней частотой 33 МГц. Это связано с тем, что работа контроллеров и обмен данными осуществляются в соответствии с частотой используемой локальной шины.
Кстати, необходимо отметить, что в современных материнских платах частота шины PCI задается через частоту шины процессора.
Конфигурации ПК с несколькими шинами, например с ISA и PCI, позволили сочетать высокую производительность компьютеров с аппаратной и программной совместимостью широкого спектра контроллеров и узлов ПК, обладающих разными скоростными и электрическими характеристиками.
В настоящее время локальные шины уже не выделяют в отдельный вид. Эти шины считают такими же системными шинами, как и традиционные ISA.

Host-bus

Архитектуры процессоров, персональных компьютеров, материнских плат и системных шин, специализированные микросхемы поддержки и стандарты шин VLB и PCI продолжают развиваться. Уже предложены улучшенные варианты данных стандартов, обеспечивающих дальнейшее увеличение пропускной способности указанных локальных шин и, соответственно, увеличение производительности ПК. При этом развитие подсистем ПК направлено как на универсализацию некоторых элементов, так и на специализацию других. С целью увеличения производительности и функциональных возможностей ПК при снижении себестоимости происходит как объединение отдельных подсистем, так и их разделение. Это касается и архитектуры шин ПК.
Поколение процессоров Pentium, Pentium Pro, Pentium MMX, Pentium II имеет более высокие внешние частоты по сравнению с процессорами 486. Для наиболее распространенных вариантов процессоров 486 внешняя частота не превышает следующих значений: для процессоров 486 фирмы Intel - 33 МГц, для процессоров 486 фирмы AMD - 40 МГц.

Частотные параметры процессоров Pentium
Процессор Частота процессора, МГц
внутренняя внешняя
Pentium-200 200 66
Pentium-166 166 66
Pentium-150 150 60
Pentium-133 133 66
Pentium-120 120 60
Pentium-100 100 66/50
Pentium-90 90 60
Pentium-75 75 50

Итак, появились процессоры с повышенной внешней частотой. Это привело к необходимости пересмотра некоторых концепций архитектурного развития персональных компьютеров, в частности структуры и топологии материнских плат, а также места и значения ранее разработанных локальных шин. Локальная шина PCI, прочно утвердившаяся в компьютерах с процессорами Pentium и Pentium Pro, в настоящее время стандартизована и функционирует, как правило, на частоте 33 МГц. Эффективная работа шины PCI обеспечивается соответствующими специализированными наборами микросхем - чипсетами. Эта шина успешно используется для связи с контроллерами мониторов, жестких дисков, локальных сетей, использующих высокоскоростные протоколы, и т. д. Однако для реализации скоростных возможностей Pentium потребовалось введение в архитектуру ПК с процессором Pentium еще одной шины в дополнение к шинам PCI и ISA. Эта дополнительная шина, названная в специальной технической литературе хост-шиной (host-bus), предназначена для скоростной передачи данных (64 разряда) и сигналов управления между процессором, ОЗУ и внешней кэш-памятью (L2). Кроме того, данная шина обеспечивает связь с интегрированным на материнской плате контроллером шины PCI. Часто эту шину называют шиной процессора (CPU Bus), системной шиной (System Bus) или шиной FSB (Front Side Bus).
Таким образом, с появлением хост-шины образовалась определенная иерархия шин в ПК: хост-шина (50/60/66 МГц), шина PCI (25/30/33 МГц), шина ISA (8 МГц). Это обеспечивает максимальную реализацию значительных потенциальных возможностей современных электронных компонентов и достижение высокой производительности компьютеров. Повышенная частота и разрядность передаваемых данных для процессора, ОЗУ, кэш-памяти (L2) и контроллера PCI позволили существенно увеличить скорость работы данных устройств и общую производительность современного ПК с процессором Pentium.

ПРИМЕЧАНИЕ При выборе процессора для ПК целесообразно учитывать не только внутреннюю частоту процессора Pentium, но и внешнюю - частоту шины. Данная частота влияет на пропускную способность шины и, соответственно, на общую производительность компьютера.

Необходимо учитывать, что снижение производительности компьютера за счет уменьшения внешней частоты процессора и шины может быть более значительным, чем рост общей производительности за счет увеличения внутренней частоты процессора.

Dual Independent Bus

Дальнейшее повышение производительности процессоров и ПК достигнуто внедрением архитектуры шины DIB (Dual Independent Bus - двойная независимая шина). Эта шина решает проблему ограничения пропускной способности шины между процессором и памятью. DIB увеличивает пропускную способность шины в три раза по сравнению с обычным решением. Архитектура DIB состоит из двух шин: шины кэш-памяти второго уровня (L2) и системной шины между процессором и основной памятью. Пропускная способность шины, связывающей процессор Pentium II и кэш L2, масштабируется в зависимости от частоты процессора. Так, шина кэш-памяти процессора версии 266 МГц работает с частотой 133 МГц, то есть в два раза быстрее, чем кэш L2 с фиксированной частотой 66 МГц процессора Pentium. С ростом внутренней частоты процессора увеличивается и разница.
Шина между процессором и ОЗУ еще более повышает производительность за счет поддержки одновременно выполняемых параллельных транзакций, в отличие от процессоров предыдущих поколений, в которых использовались одиночные последовательные транзакции.

AGP

AGP (Accelerated Graphics Port - ускоренный графический порт) - это новая 32-разрядная шина передачи информации в компьютере. Она обеспечивает передачу больших объемов видеоинформации (трехмерная графика, полноэкранное видео и т. п.) с высокой скоростью, ранее недоступной с помощью шины PCI. Интерфейс AGP оптимизирован с целью достижения максимальной производительности компьютеров с высокопроизводительными процессорами класса Pentium II, с высокими внутренними и внешними тактовыми частотами.
Тактовая частота AGP, определяющая скорость передачи информации, стандартно составляет 66 МГц, PCI - 33 МГц. Большинство современных материнских плат поддерживает для AGP кроме частоты 66 МГц частоту передачи данных 133 МГц: AGP 1.0 Compliance Interface поддерживает 1x и 2x Speed Mode, в режиме AGP 2х передача информации осуществляется по переднему и заднему фронтам тактовых импульсов, что позволяет фактически удвоить пропускную способность шины AGP. Ведутся работы по реализации режима 4x.
Частота AGP обычно связана с частотой шины процессора - хост-шины (FSB). Скорость передачи информации при тактовой частоте AGP, равной 66 МГц, в режиме 1х достигает 264 Мбайт/с, а в режиме 2х - 528 Мбайт/с (66 МГц ґ 4 байт ґ 2), традиционная PCI - 132 Мбайт/с (33 МГц ґ 4 байт = 132 Мбайт/с). При использовании высоких частот для хост-шины, превышающих стандартные для используемых чипсетов (overckloking), рабочая частота AGP и скорость передачи информации, как правило, возрастают.
Использование AGP решает проблему хранения текстурных карт, необходимых в формировании 3D-изображений. В настоящее время нередки случаи, когда для формирования качественного изображения текстурные карты требуют для своего хранения несколько десятков мегабайт, то есть значительно больше объема обычно устанавливаемой на видеоадаптере памяти. Формирование, хранение и последующая передача подобной информации из ОЗУ в видеоадаптер порождают значительные потоки информации, с которыми традиционная шина PCI часто не справляется. Кроме того, нередко шина PCI перегружена новыми высокоскоростными устройствами, подключаемыми к данной шине, например такими, как диски стандарта UltraDMA или сетевыми адаптерами с пропускной способностью 100 Мбайт/с. За счет исключения интенсивных потоков видеоданных с шины PCI увеличивается скорость работы устройств, подключенных к данной шине, и возрастают общая производительность и устойчивость всей системы компьютера.

Рисунок

Для полного раскрытия потенциальных возможностей шины AGP целесообразно использовать высокопроизводительные процессор и соответствующий чипсет, например такие, как Pentium II с частотой 400 МГц и i440BX с частотой хост-шины (FSB) 100 МГц.

USB, IEEE 1394

Спецификация периферийной шины USB разрабатывалась фирмами Compaq, DEC, IBM, Intel, Microsoft, NEC, Northern Telecom. Шина USB допускает внешнее подключение периферийных устройств к компьютеру посредством использования специальных портов в архитектуре современных компьютеров. Подключение осуществляется через специальные разъемы USB на материнской плате, выведенные на заднюю стенку корпуса компьютера, аналогично традиционным разъемам COM и LPT. Однако в отличие от них в USB используется шинная архитектура, позволяющая к каждому порту USB подключить последовательно до 127 разнообразных устройств, удовлетворяющих данной спецификации.
Шина USB обладает большой пропускной способностью, достигающей 12 Мбит/c, что почти в 100 раз превышает возможности COM-порта и в 20 раз - LPT. Это позволяет подключать большое число устройств без ухудшения качества их работы. В соответствии с принятыми спецификациями на USB, длина соединительного кабеля может достигать 5 метров.
Современные операционные системы легко распознают добавленные USB-устройства, реализуя технологию plug-and-play. В случае использования шины USB появляется возможность изменять конфигурацию компьютера включением или отключением внешних устройств без перезапуска системы. Кроме того, последовательное подключение устройств, характерное для USB, позволяет отказаться от большого количества соединительных кабелей, используемых в традиционных случаях.
Практически все современные материнские платы стандарта ATX, ориентированные на использование процессоров Pentium II, Celeron и Pentium III имеют в своем составе два порта USB. Программная поддержка осуществляется операционными системами Windows 95 OSR 2.1 и Windows 98, которые являются наиболее распространенными системами.
В настоящее время данный способ является стандартным способом подключения периферийных устройств к компьютеру. Существуют десятки устройств, удовлетворяющие данному стандарту. Многие фирмы осуществляют продажу и сопровождение устройств с данным интерфейсом.
Спецификация высокоскоростной последовательной шины IEEE 1394 (FireWire) предложена фирмой Sony. Как и USB, она обеспечивает внешнее подключение периферийных устройств к компьютеру. Скорость передачи данных - 100, 200, 400 Мбит/c, расстояние - до 4,5 м, количество устройств - до 63. Шина IEEE 1394 обеспечивает возможность переконфигурации без выключения компьютера.
Если шина USB ориентирована на устройства ввода, телекоммуникационное оборудование, принтеры, аудио/видео устройства, то IEEE 1394 - на высокоскоростные устройства, такие как устройства хранения данных и цифровую видеоэлектронику.
Способы подключения устройств, шины и их спецификации постоянно совершенствуются. В результате рабочие скорости передачи данных увеличиваются. Так, например, для USB 2 скорость достигла величины 480 Мбит/с. Новая спецификация IEEE 1394 предусматривает увеличение скорости до 800 Мбит/c и 1600 Мбит/c.

Перспективы

Корпорация Intel ведет разработку чипсетов, рабочие частоты которых - 133 МГц и более. Выпуск подобных наборов ожидается в 2000 г. Использование таких чипсетов, модулей RIMM, процессоров Pentium III, рассчитанных на частоту шины 133 МГц, позволит увеличить общую производительность компьютера.
Аналогичные исследования по разработке и выпуску высокопроизводительных чипсетов ведутся такими фирмами, как SiS и VIA.
Данные работы поддержаны фирмами-производителями материнских плат.
Фирмы IBM, Hewlett-Packard, Compaq предложили новый стандарт для шины PCI. Условное название для шины - PCIX, рабочая частота шины - 133 МГц. Это позволит увеличить скорость передачи данных до 1 Гбайт/с.

Типы и характеристики стандартных шин, используемых в настоящее время, приведены в таблице 10.1.

Характеристики стандартных шин.

Тип/назначение Разрядность Тактовая частота (МГц) Пропускная способность (Мб/с)
ISA/общая
EISA/общая
VLB (VESA)
VLB2/локальная
PCI/ввод/вывод 33, 66 120, 133
SBUS/ввод/вывод 32, 64 20, 25 80, 100
MBUS/процессор-память 125 (400)
XDBUS/процессор-память 310 (400)
AGP/локальная графическая
PCI-X

Системная шина ISA (Industry Standard Architecture) впервые стала применяться в ПК IBM PC/AT на базе процессора 12826. Данная шина позволяет передавать параллельно 16 бит данных и обращаться к 16 Мбайт системной памяти. В современных компьютерах используется как шина ввода/вывода для организации связи с медленно действующими периферийными устройствами. С появлением процессоров i386, i486 системная шина ISA стала "узким местом" ПК на их основе.

Системная шина EISA (Extended Industry Standard Architecture), разработанная в 1988 году, обеспечивает адресное пространство в 4 Гбайта, 32-битовую передачу данных, тактируется частотой около 8 Мгц, имеет максимальную теоретическую скорость передачи данных 33 Мбайт/с и совместима с шиной ISA.

Шина МСА также обеспечивает 32-разрядную передачу данных, тактируется частотой 10 МГц, но не совместима с шиной ISA и используется только в компьютерах компании IBM.

Локальная шина VESA-Local-Bus (VLB) предназначалась для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей. Она подключалась непосредственно к процессору i486, и только к нему. После появления процессора Pentium ассоциация VESA приступила к работе над новым стандартом VLB версии 2, который предусматривает использование 64-битовой шины данных и увеличение количества разъемов расширения. Ожидаемая скорость передачи данных - до 400 Мбайт/сек.

Шина PCI (Peripheral Component Interconnection) в первом варианте использовалась как локальная шина и предназначалась для тех же целей, что и предыдущая шина (VLB). В действующем втором варианте шина PCI относится к шинам ввода/вывода. В данном случае соединение шин центрального процессора и PCI осуществляется через так называемую РС1-перемычку, мост PCI или контроллер, которые согласуют шину центрального процессора с шиной PCI. Это означает, что PCI может работать с процессорами различных платформ и поколений.

Шина VME приобрела большую популярность как шина ввода/вывода в рабочих станциях и серверах на базе RISC-процессоров. Эта шина высоко стандартизирована, имеет несколько версий этого стандарта: VME32, VME64.

В однопроцессорных и многопроцессорных рабочих станциях и серверах на основе микропроцессоров архитектуры SPARC одновременно используются несколько типов шин: Sbus, Mbus иXDBus , причем шина Sbus применяется в качестве шины ввода/вывода, a Mbus и XDBus - в качестве шин для объединения большого числа процессоров и памяти.

Локальная шина AGP (Accelerated Graphics Port) первоначально предназначалась исключительно для графики и была способна повысить производительность видео-приложений. Для использования технологии AGP необходим набор микросхем Intel 440LX, который позволяет разгрузить сравнительно "узкую" (133 Мб/с) шину PCI от жадного на ресурсы видеоадаптера и подключить последний к специально предназна­ченной для него более "широкой" (528 Мб/с) шине AGP. На долю же PCI остаются более медленные устройства, функционирование которых существенно улучшается благодаря отключению от шины более быстродействующих устройств, то и дело создающих "пробки" в стремительном потоке данных. Набор 440LX не только имеет поддержку AGP, но и допускает использование в машинах на базе Pentium II быстродействующей памяти SDRAM, которая обеспечивает более высокую производительность, чем ОЗУ типа EDO DRAM, применяемое в машинах Pentium II со старым набором микросхем.

PCI-X - расширение шины PCI, которая работает на тактовой частоте 133 МГц. Шина PCI-X обладает обратной совместимостью с PCI, требует нового набора микросхем Intel 450 NX, кроме того, благодаря новой схеме обмена регистр-регистр достигается пропускная способность 1,06 Гб/с (8 Гбит/с), что обеспечивает почти шестикратный выигрыш в производительности. В первую очередь PCI-X предназначена для подключения высокопроизводительных адаптеров типа Gigabit Ethernet, Ultra 3SCSI и Fibre Channel (FC-AL).


С повышением тактовых частот и разрядности процессоров настала насущная проблема в повышении скорости передачи данных в шинах (какой смысл использовать камень с тактовой частотой, скажем, 66 МГц, если шина работает на частоте лишь 8,33 МГц). В одних случаях, например клавиатуре или мышке, высокая скорость ни к чему. Но инженеры фирм производителей плат расширения готовы были изготовлять устройства со скоростью, которую шины не могли предоставить.

В
ыход из создавшегося положения был найден следующий: часть операций обмена данными, требующих высоких скоростей, должна осуществляться не через стандартные разъемы шины ввода/вывода, а через дополнительные высокоскоростные интерфейсы - шину процессора, примерно так же, как подключается внешний кэш.

Дело в том, что эти самые высокоскоростные интерфейсы подключаются к шине процессора. Из этого следует, что подключаемые платы будут иметь доступ непосредственно к процессору через его шину. Такая конструкция получила название локальной шины (LB, Local Bus). Локальная шина не заменяла собой прежние стандарты, а дополняла их. Рисунок демонстрирует различие между обычной архитектурой и архитектурой с локальной шиной. Между прочим, первые шины ISA как раз и были локальными, но когда их тактовая частота превысила 8 МГц, произошло разделение.

Основными шинами в компьютере по-прежнему оставались ISA или EISA, но к ним добавлялись один или несколько слотов локальной шины. Первоначально эти слоты использовались почти исключительно для установки видеоадаптеров, при этом к 1992 году было разработано несколько несовместимых между собой вариантов локальных шин, исключительные права на которые принадлежали фирмам-изготовителям.

Такое разнообразие сдерживала распространение локальных шин, поэтому Ассоциация по стандартам в области видеоэлектроники VESA (Video Electronic Standard Association), представляющая более 100 компаний, предложила в августе 1992 года свою спецификацию локальной шины VESA Local Bus (VL-bus или VLB) , которая не изменяла, а дополняла существующие стандарты. Шина VLB разработана с целью увеличить пропускную способность между основным процессором и видеокартой, для этого просто к основным шинам добавлялось несколько новых быстродействующих локальных слотов. Основная функция, для которой была предназначена новая шина, – обмен данными с видеоадаптером.

Представляла собой 32-битную шину, которая использовала третий и четвёртый разъём в виде продолжения обычного слота ISA. Шина работала на номинальной частоте 33 МГц и обеспечивала существенный прирост производительности по сравнению с ISA. В дальнейшем шину VLB стали использовать производители контроллеров жестких дисков и других устройств, требующих высокоскоростной передачи данных. Выпускались даже 100-мегабитные Ethernet контроллеры с шиной VLB. Широкое распространение шины VESA обусловила ее относительная дешевизна и совместимость “сверху вниз” со своей предшественницей – шиной ISA. Разъем VLB есть разъем ISA с “продолжением”.

Основные характеристики VL-bus таковы:


  • поддержка процессоров серий 80386 и 80486. Шина разработана для использования в однопроцессорных системах, при этом в спецификации предусмотрена возможность поддержки х86-несовместимых процессоров с помощью моста (bridge chip);

  • максимальное число bus master - 3 (не включая контроллер шины). При необходимости возможна установка нескольких подсистем для поддержки большего числа master. Несмотря на то что изначально шина была разработана для поддержки видеоконтроллеров, возможна поддержка и других устройств (например, контроллеров жесткого диска);

  • допускается работа шины на частоте до 66 МГц, однако электрические характеристики разъема VL-bus ограничивают ее до 50 МГц (это ограничение, естественно, не относится к интегрированным в материнскую плату устройствам);

  • двунаправленная (bi-directional) 32-разрядная шина данных поддерживает и 16-разрядный обмен. В спецификацию заложена возможность 64-разрядного обмена;

  • поддержка DMA обеспечивается только для bus masters. Шина не поддерживает специальных "инициаторов" DMA;

  • максимальная теоретическая пропускная способность шины 160 Мб/с (при частоте шины 50 МГц), стандартная - 107 Мб/с при частоте 33 МГц;

  • поддержка пакетного режима обмена (для материнских плат 80486, поддерживающих этот режим). Пять линий используется для идентификации типа и скорости процессора, сигнал Burst Last (BLAST#) используется для активизации этого режима. Для систем, не поддерживающих этот режим, линия устанавливается в 0;

  • использование 58-контактного разъема МСА. Максимально поддерживается 3 слота (на некоторых 50-мегагерцовых шинах возможна установка только 1 слота). Слот VL-bus устанавливается в линию за слотами ISA/EISA/MCA, поэтому VL-платам доступны все линии этих шин;

  • поддержка, как интегрированного кэш- процессора, так и кэша на материнской плате. Напряжение питания - 5 В. Устройства с уровнем выходного сигнала 3,3 В поддерживаются при условии, что они могут работать с уровнем входного сигнала 5 В.
Конструктивно шина VLB представляет собой дополнительный разъем (116-контактный) при разъеме ISA. Электрически шина выполнена в виде расширения локальной шины процессора - большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации.

Эта 32/32-разрядная шина разрабатывалась для машин с 386, 486 и Pentium процессорами. Наиболее широкое распространение шина VLB получила на материнских платах 486. На них VESA – это линии адреса, данных и управления процессора, выведенные на разъем. Это обстоятельство накладывает значительные ограничения на VLB- карты расширения – временные и нагрузочные параметры должны быть четко выдержаны. Как указано в инструкциях на многие материнские платы, число VLB- карт при тактовой частоте 25 МГц не должно превышать трех, при 33 МГц – двух, при 40 и 50 МГц – одной. В случае нарушения этих требований система будет работать нестабильно, поскольку превышена нагрузочная способность процессора.

Для оценки скорости шины можно привести следующий расчет: если карта расширения работает на частоте 50 МГц, тогда пропускная способность шины будет равна 32*50*10 6 = 1,6*10 9 Мбит/с = 200 Мбайт/с, что довольно много. Однако не следует забывать, что такая скорость почти никогда не может быть востребована, поскольку данные из видеопамяти не могут читаться с такой скоростью. Кроме того, во время обращения к VLB- карте процессор не может больше заниматься ничем, сколько бы медленным не было устройство на этой карте (например, последовательный порт).

Шина VL-bus явилась огромным шагом вперед по сравнению с ISA как по производительности, так и по дизайну. Одним из преимуществ шины являлось то, что она позволяла создавать карты, работающие с существующими чипсетами и не содержащие большого количества схем дорогостоящей управляющей логики. В результате VL-карты получались дешевле аналогичных EISA-карт. Однако и эта шина не была лишена недостатков, главными из которых являлись следующие:


  • ориентация на 486-й процессор. VL-bus жестко привязана к шине процессора 80486, которая отличается от шин Pentium и Pentium Pro /Pentium II.

  • ограниченное быстродействие. Как уже было сказано, реальная частота VL-bus - не больше 50 МГц. Причем при использовании процессоров с множителем частоты шина использует основную частоту (так, для 486DX2-66 частота шины будет 33 МГц);

  • схемотехнические ограничения. К качеству сигналов, передаваемых по шине процессора, предъявляются очень жесткие требования, соблюсти которые можно только при определенных параметрах нагрузки каждой линии шины. По мнению Intel, установка недостаточно аккуратно разработанных VL-плат может привести не только к потерям данных и нарушениям синхронизации, но и к повреждению системы;

  • ограничение количества плат. Это ограничение вытекает также из необходимости соблюдения ограничений на нагрузку каждой линии.
Несмотря на существующие недостатки, VL-bus была несомненным лидером на рынке, так как позволяла устранить узкое место сразу в двух подсистемах - видеоподсистеме и подсистеме обмена с жестким диском. Однако лидерство было недолгим, поскольку корпорация Intel разработала свою новинку - шину PCI. По мнению компании, VL-bus базировалась на технологиях 11-летней давности и являлась всего лишь "заплаткой", компромиссом между производителями. Справедливости ради надо сказать, что PCI действительно была избавлена от большинства недостатков, присущих VL-bus.

Популярность шины VLB продлилась до 1994 года. Главная особенность шины, которая позволяла достичь высокой производительности, послужила и причиной ухода VLB с рынка. Шина являлась прямым расширением шины 486 процессора/памяти, работающим на той же скорости, что и процессор (отсюда и имя - локальная шина - local bus). Прямое соединение означает, что подключение слишком большого числа устройств приводило к опасности создания помех самому процессору, особенно если сигналы проходили через слот. VESA рекомендовала использовать не более двух слотов на тактовых частотах 33 МГц или трёх слотов, если они использовали специальный буфер. На более высоких тактовых частотах следовало подключать не более двух устройств, а на частоте 50 МГц оба устройства VLB должны быть встроены в материнскую плату.

Поскольку шина VLB работает синхронно с процессором, увеличение частоты процессора приводило к появлению проблем с периферией VLB. Чем быстрее должна была работать периферия, тем она дороже стоила по причине трудностей, связанных с производством высокоскоростных компонент. Лишь немногие устройства VLB поддерживали скорость выше 40 МГц.